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ABSTRACT: Environmental monitoring programs generate multi-
variate time series for the assessment of ecosystem health. Recent
developments in causal inference offer ways to translate these
observational data into networks able to explain gains and losses in
the trajectories of indicator variables. Here, we present a case study
of this approach using surface water dissolved oxygen (DO) criteria
attainment across the Chesapeake Bay. We sought to understand the
long-term fluctuations of DO in response to external watershed
inputs (freshwater, nutrients, sediments) and internal water
properties (water temperature, chlorophyll-a, nutrient concentra-
tions). We found contrasting controls across different regions of the Chesapeake Bay. Summer freshwater and sediment inputs
reduced surface water DO criteria attainment in landward regions but elevated attainment in open, mainstem waters. Algal biomass
was often positively associated with AD in surface waters, in contrast to deep waters where algae are well-understood to lower oxygen
levels. Using estimates of net effects, we also discovered that sediment flowing into many of the mainstem segments during the
winter-spring season has had a net negative effect on oxygen levels. These segments have yet to deteriorate, which has masked this
risk. This work demonstrates the utility of long-term monitoring programs to better understand and manage complex ecosystems.
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1. INTRODUCTION

Managing ecosystems involves tracking systemic properties
designed to identify the risk of degradation or failure to achieve
stated restoration goals. Indicator variables are useful
representations of systemic risk, providing early warning
signs like slowed responses to shocks,1 changes in soil
biological and chemical properties,2 or proxies for habitat
suitability.3 Successful management designs often include
quantitative ways to identify ecosystems at risk4−6 but lack
clear recommendations for how to manage these systems
toward prescribed goals under uncertainty in climate,
intervention effectiveness, and system understanding.
Advances in the analysis of time series data may help

management programs by identifying causes of change in
indicator variables that interventions can be designed to
prevent or ameliorate. This is especially helpful because, with a
renewed focus on remote and observational data collection
(e.g., the creation of NEON;7 see also refs 8−10), time series
on relevant covariates are increasingly available. The central
idea in this paradigm is to convert time series of variables into
a network describing interactions between the variables. This
network can then be interrogated to explain the causes of
indicator variable dynamics and predict interventions most
likely to help.
Here, we explore the value of this time series approach to

indicator variable-based management of ecosystems, using the

Chesapeake Bay as a case study. The Chesapeake Bay’s
watershed of more than 100 rivers spans six states along the
Atlantic coast of the United States, supporting more than 3000
species of plants and animals. The Bay has suffered
eutrophication for decades resulting in excessive algal growth,
decreased submerged aquatic vegetation acreage, and low
concentrations of dissolved oxygen (DO).11−16 In response,
the Chesapeake Bay Program partnership developed a
guidance framework to establish water quality criteria for
DO, water clarity, and chlorophyll-a for 92 segments across the
Bay’s tidal waters17,18 (Figure 1). To reduce nutrient and
sediment loads delivered to the Bay, coordinated management
efforts among the Bay state jurisdictions began in the 1980s,
and in 2010, the Chesapeake Bay total maximum daily load
(TMDL) was established to enforce nutrient reductions to
achieve habitat health that can fully support living resource
survival, growth, and reproduction.19 The TMDL is designed
to ensure that all pollution control measures needed to fully
restore the Bay and its tidal tributaries are in place by 2025.
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The indicator variable “attainment deficit” (AD) was
developed as part of these Bay-wide monitoring and assess-
ment efforts.20 AD measures dissolved oxygen status as an
indicator of water quality and ecological health as they pertain

to habitat for metazoan life. Zhang et al.20 documented the
estimated AD for each tidal segment for each running three-
year periods during 1985−2016. The authors analyzed AD
across different depth-based habitats and detected significant,

Figure 1. Chesapeake Bay open-water segments with attainment deficit (AD) in 2014−2016. Full names of the segments are available from Table
S1; AD data are available from Table S2. The authors would like to thank Zhaoying Wei (Chesapeake Bay Program) for her assistance on this
figure.
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improving trends during 2000−2016 in 15 open-water
segments. However, clear linkages between AD status in the
92 tidal segments and underlying external and internal drivers
remain elusive and have yet to be explored. Furthermore, while
the majority of prior research in coastal ecosystems has
explored controls on oxygen in deep waters where depletion is
most severe, fewer, if any, studies have sought to understand
controls on oxygen availability as it pertains to habitat in
surface water environments.
In the above context, the main objectives of this work are

two-fold: (1) explore the spatial and temporal patterns of AD
in 92 open-water segments of the Chesapeake Bay that
represent the full diversity of environments in the estuary, and
(2) use tools from the burgeoning fields of nonlinear dynamics,
network science, and causal inference to investigate whether
and how AD has been affected by potential external and
internal drivers, including management actions (e.g., reduction
of nutrient loads), hydrological and climatic variability, and
hydrodynamic and biogeochemical characteristics.

2. MATERIALS AND METHODS
2.1. Attainment Deficit (AD). AD quantifies the amount

of space-time exceedance of the dissolved oxygen criterion.
Because dissolved oxygen varies substantially over multiple
spatial and temporal scales, this integrated measure of oxygen
provides a useful metric of the duration, extent, and intensity of
habitat condition. For a specific tidal segment and assessment
period, AD can be computed by the following steps: (1) collect
station-level DO monitoring data, (2) interpolate DO
concentrations among stations, (3) compare interpolated
values with designated-use specific criterion values to quantify
criteria exceedance, (4) construct the cumulative frequency
curve of criteria exceedance for all sampling events (also called
“attainment curve”), (5) develop a reference curve of allowable
criteria exceedance, (6) intersect the attainment curve and the
reference curve to determine the nonallowable criteria
exceedance, and (7) scale the nonallowable criteria exceedance
to obtain AD.3,16,17,21

AD is always in the range from 0% to −100%. An attainment
deficit of 0%, which is the best possible condition, indicates
that the minimum water quality requirements for protecting
aquatic life have been met. An attainment deficit of −100%,
which is the worst possible condition, implies complete
noncompliance, which has substantial negative effects on
living resources’ survival, growth, and reproduction. Any other
values also indicate noncompliance, with values closer to
−100% implying more harmful conditions. So while AD is a
less intuitive negative percent, relationships with variables
influencing AD are intuitive in that positive associations
describe beneficial relationships and negative associations
describe harmful relationships.
AD is an important indicator of a habitat inclusive of many

types of organisms and also provides a summary of ecological
conditions, given that dissolved oxygen levels integrate the
effects of a variety of physical and biological processes. An
advantage of using the Chesapeake Bay as a case study is the
availability of long-term monitoring data. We focused on the
so-called open water (OW) segments of the Bay because of
their wide spatial coverage and ecological relevance, as the OW
designated use covers the entire tidal surface of the
Chesapeake Bay (i.e., all 92 tidal segments). These surface
waters are a potential habitat for a wide variety of organisms in
the Chesapeake Bay, including sport fish (striped bass, bluefish,

mackerel), forage fish (menhaden, silversides), and demersal
organisms in the most shallow, vertically mixed segments.
Additionally, long-term changes in oxygen within OW
segments of the Chesapeake Bay have been less studied than
hypoxia-vulnerable bottom waters, even though oxygen
conditions can reach harmful levels in OW environments.
For this study, AD values were obtained from Zhang et al.20

for each of the 92 OW segments of the Chesapeake Bay
(Figure 1) for three-year assessment periods between 1985−
1987 and 2014−2016. For OW DO, June−September was
evaluated for the 30 day mean criterion in the attainment
assessment procedures, in which the criterion thresholds were
5.5 mg/L for very low-salinity regions and 5 mg/L otherwise.
Full names of the segments are available from Table S1, and
AD data are available from Table S2.

2.2. Water Quality Parameters. Water quality measure-
ments were obtained from the U.S. Environmental Protection
Agency Chesapeake Bay Program Water Quality database22

and included Secchi depth (Secchi), light attenuation
coefficient (KD), surface-layer (i.e., at depth ≤1 m) salinity
(SAL), water temperature (WTemp), and concentrations of
chlorophyll-a (CHLA), DO, nutrient (dissolved inorganic
nitrogen, DIN; total nitrogen, TN; total phosphorus, TP), and
total suspended solids (TSS). These variables were measured
every 2−4 weeks at 133 tidal monitoring stations in the
Chesapeake Bay and its tributaries. Riverine discharge (Flow)
and loadings (SSload, TNload, and TPload) were recorded at
nine river input monitoring stations located at the main
tributaries. We aggregated the flow and loadings across the 133
monitoring stations assuming that the downstream stations
and stations further south in the bay (i.e., closer to the Atlantic
Ocean) experience cumulatively aggregated loadings.23

All water quality variables at the station level were processed
to create a consistent set of monthly average values by
following the approach from ref 23 for filling-in missing data
using information from neighboring stations. Time series from
the stations with documented changes in data collection
laboratories or methodology were adjusted to remove potential
level shifts at the times of the changes.23 The monthly station
data were then interpolated onto a dense 250 m grid and
averaged within each segment of the bay. The interpolated
monthly values within each segment were then aggregated
within the following periods in each year: January−May
(variables with the suffix ‘_JanMay’) and June−September
(suffix ‘_JunSep’) for the external loadings and June−
September (suffix ‘_JunSep’) for all estuarine variables. Finally,
a three-year moving average was applied so the temporal
resolution of water quality parameters matched that of the AD
data.

2.3. Statistical Methods. The local-scale heterogeneity of
ecological data is important to consider in ecosystem studies,
since the aggregation of data might mask existing relationships
or even lead to the phenomenon of “ecological fallacy” where
conclusions differ across levels of data aggregation.24,25 One of
the ways to minimize ecological fallacy and aggregation bias is
by controlling how units of analysis are aggregated, with a goal
of obtaining homogeneous groups (clusters).26 Then, the
models can be estimated for each cluster separately.
In many applied studies, including this one, the best way to

assign units of data to clusters is unknown. Even the total
number of clusters is typically unknown. Hence, methods of
unsupervised learning are used to identify clusters on the basis
of patterns in the data. Here, we clustered the bay segments to
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identify clusters with homogeneous dynamics of AD. Due to
specifics of the watershed, homogeneous dynamics may be
observed at locations spatially distant from one another (e.g.,
see clustering results for water temperature27 and TSS28), so
we used agglomerative clustering without specifically consid-
ering spatial proximity of the segments. Euclidean distances
between AD time series and Ward’s method for finding
minimum-variance compact clusters were used to cluster the
segments.29,30 The number of clusters k was identified as the
minimal number of clusters that achieve at least 75% reduction

of the total within-cluster sum of squared errors. The analysis
was done using R package stats.31

We attempted to infer the direct effects of variables on one
another with two state-of-the-art causal discovery methods:
convergent cross mapping (CCM32) and the Momentary
Conditional Independence extension of the PC algorithm
(PCMCI).33 CCM quantifies the probabilities of bidirectional
causation between pairs of variables in nonlinear deterministic
systems with variables that are weakly to moderately coupled.
This method uses the insight of Takens theorem34 that the

Figure 2. Map with results of hierarchical clustering of attainment deficit in 1985−2014 in open-water segments of the Chesapeake Bay (n denotes
the number of segments in each group). Graphs show the aggregated dynamics of attainment deficit in each cluster (note a different scale for cluster
1). The 92 open-water segments and their assigned clusters are listed in Table S1.
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dynamics of a system of coupled variables can be reconstructed
using time lags of only one of the variables. When the resulting
“shadow manifold” of a variable does a better job predicting
another variable’s shadow manifold (called cross mapping)
with increasing amounts of data (called convergent cross
mapping), the second variable is thought to have caused the
first. PCMCI, the other kind of causal discovery we applied,
works in two steps: (1) use the PC algorithm,35 named after its
two authors, to find the possible causes of each variable, and
(2) refine the causal graph produced in the first step by using
its interactions as conditions in tests of momentary conditional
independence (MCI) between putative cause and effect
variables. PCMCI has the advantage of not assuming a kind
of dynamical system and so not requiring time series with
particular characteristics.

We also integrated our own expert opinions into a consensus
set of interactions, which we then estimated by fitting
structural equation models (SEM;36 R package lavaan
0.6−637) for each cluster. SEM is a well-established tool for
causal inference in systems with complex interactions (e.g., see
studies in refs 38−40) that relies on assumptions of the specific
causal interactions on the basis of the knowledge of
researchers.41 To tailor our consensus set of interactions (56
total) to each cluster in a data-driven way, we iteratively
removed nonsignificant (if any; α = 0.05) interactions until
only statistically significant interactions remained. The removal
was done one at a time within each cluster, starting with the
largest p-value.
The direct effects commonly shown in SEM pathways (e.g.,

Figure 4) are difficult to interpret with as many interacting

Figure 3. Dynamics of selected water quality parameters per cluster (cf. attainment dynamics in Figure 2). Note that Flow_JanMay and
SSload_JunSep are plotted on log10 axes.
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variables as govern dissolved oxygen in the Chesapeake Bay.
While these pathways show useful mechanistic relationships,
the combined effects of multiple interactions are hard to intuit
from these networks. Since we are primarily concerned with
drivers of AD, we have calculated the total (net) effects of each
variable on AD within each cluster-specific SEM. These net
effects were calculated as the sum of the effects of every acyclic
path connecting that variable to AD in each cluster’s SEM.42

To find all such paths, we used a breadth-first search using R
package igraph 1.2.5.43 The effect of each path was
calculated as the product of the standardized SEM coefficients
at each interaction along the path from the causal variable to
AD.

3. RESULTS AND DISCUSSION
3.1. Patterns of AD by Cluster. We analyzed a 32-year

record (1985−2016) of open-water attainment of DO
conditions in 92 segments of the Chesapeake Bay and its
tributaries (Figures 1 and 2). Thirteen segments were removed
that attained dissolved oxygen criteria at every time during the
period of record (AD = 0% always, hence, not correlated with
time series of explanatory variables; green segments on the

map in Figure 2). We also removed six other segments (shown
as “NA” in Figure 2), including five segments that had more
than half of AD records missing and one segment with a small
area (0.22 km2).
Across the 73 segments of the Chesapeake Bay, we found

four clusters with unique temporal AD dynamics (Figure 2).
Marked differences (up to 50 percentage points) among these
four clusters illustrate substantial spatial heterogeneity and
suggest that each cluster may have been responding to different
controlling factors. Oxygen attainment was high in both
clusters 1 and 2 (AD > −2.5% and > −20%, respectively) and
mostly constant through time, with cluster 1 having the highest
attainment (AD closest to 0) and lowest absolute variability
among the four clusters. The segments in cluster 1 (where AD
∼ 0) and where no deficit existed share a large surface area,
suggesting that exposure to wind stress may allow for surface
water oxygen concentrations to stay nearer to equilibrium with
the atmosphere (and thus in attainment) than the smaller,
more protected segments. Interestingly, summer chlorophyll-a
and DIN both appeared to decrease modestly over time in
clusters 1 and 2 (Figure 3), consistent with recent reports of
modest long-term water-quality improvements in some regions

Figure 4. Cluster-specific structural equation models. Arrows show direct causal effects (pointing from the cause to the effect variable), with the
width being proportional to the strength, and color (blue/red) representing the sign (negative/positive) of the effect, such that when the cause
variable increases, the effect variable decreases/increases. Each cluster’s interactions started with the same expert opinion consensus graph that was
iteratively winnowed down to retain only statistically significant (α = 0.05) effects. The strength and statistical significance of each link are
summarized in Tables S4−S7.
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of this system.15,40 In contrast, attainment was relatively low in
clusters 3 and 4, with minimum AD values of about −60% and
−80%, respectively (Figure 2). Cluster 3 included the most
substantial variability in oxygen, chlorophyll-a, and DIN
(Figure 3), consistent with its strong temporal variability in
AD (Figure 2). The difference in AD between clusters was
likely driven by differences in segment size, proximity and
connectivity to land and associated water quality dynamics. For
example, the mainstem segments are mostly in cluster 1, which
is the biggest cluster in segment count and total surface area,
and cluster 2 contains many of the larger, more downstream
tributary segments connected to the mainstem. Both clusters 3
and 4 comprise a small number of segments (4 and 5
segments, respectively) and are primarily located in very

upstream reaches of tributaries surrounded by land (Figure 2);
cluster 3 segments are mostly in low-salinity regions, whereas
cluster 4 segments are in high-salinity waters (Figure 2 and
Figure S1).

3.2. Causes of AD Dynamics. We relied on prior
knowledge to create a consensus set of interactions, which
were estimated as a structural equation model. In tailoring the
SEM to each cluster, we found 54, 41, 32, and 35 significant
interactions for clusters 1−4, respectively (output in Tables
S12−S23). The resulting causal graphs relating AD to
biogeochemical and physical processes in the bay inferred
from their respective time series (Figure 3) found similar
driving variables, primarily including nutrient and sediment
inputs, but the relative importance, season, and direction of

Figure 5. Relative total (net) effects on AD. These are the sum of every acyclic path connecting each variable to AD in each cluster’s SEM (Figure
4), scaled to sum to one within each cluster. The strength of each path is the product of the standardized coefficients along it. Important drivers are
plotted individually on the right showing cluster-specific causes of AD dynamics. Winter−spring flow (Flow_JanMay) and corresponding
suspended solids (SSload_JanMay) are most responsible for the net reduction of attainment in clusters 1 and 4.
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their effects on AD were cluster-specific (Figure 4). Freshwater
inputs were most responsible for AD dynamics across all four
clusters of the Chesapeake Bay, which is consistent with prior
work showing that sediment and nutrient runoff from the
Chesapeake Bay’s watershed impact stratification and
residence times, affecting light availability and associated
phytoplankton growth, which can result in eutrophica-
tion.11,44,45

This strong impact of freshwater inputs on AD, however,
was seasonally dependent and did not consistently improve
(positive association) or worsen (negative association) AD
(Figure 5). In clusters 2 and 3, winter−spring riverine inputs
(Flow_JanMay) improved AD. The corresponding strong
covariation of chlorophyll-a and DO in cluster 3 (Pearson
correlation = 0.89, but also compare their time series in Figure
2) is consistent with several prior investigations in the
Chesapeake Bay that have related winter−spring river flow to
spring and summer phytoplankton biomass and primary
production (e.g., refs 46 and 47), where river inflows and
associated nutrient loads create nutrient-replete conditions that
support elevated primary production. The fact that both
winter−spring flow and suspended sediment load improved
AD in cluster 3 illustrates the known linkage between flow and
suspended sediment input48 but also suggests that the
beneficial effects of flow on AD outweighed the co-occurring
but harmful effects of sediments on light available for primary
production in this cluster. It is also possible that the elevated
flushing or turbidity effects from the winter−spring flow, which
would otherwise reduce phytoplankton growth and AD, had
expired by summer but that the nutrient enrichment effects
persisted to support phytoplankton growth. In contrast,
summer river flow worsened AD, particularly in clusters 3
and 4 where AD is low when the summer river flow is high. In
these clusters, the proximal effect of summer river flow
appeared to be that either (a) elevated flushing reduced
biomass and production (e.g., ref 49) or (b) increased turbidity
associated with sediment inflows23 limited photosynthesis and
associated oxygen production during this season. In fact,
cluster 4 includes the highly enriched small and deep
tributaries of the Elizabeth River where harmful algal blooms
often develop in response to high residence time (e.g., refs 50
and 51), consistent with our findings here. In general, the net
causes of AD (Figure 5) highlight the contrast between
downstream estuarine regions and more upstream regions. In
the former, elevated river flows and nutrient inputs generate
high phytoplankton production and elevated DO, and thus,
AD improves. In contrast, in more upstream regions, elevated
river flows result in declines in chlorophyll-a associated with
flushing and light limitation that worsen AD.52

Compared to external freshwater inputs to the Chesapeake
Bay, the impact of water temperatures on AD was muted over
1985−2016. Although increasing water temperature worsened
AD in clusters 1 and 4 and was linked to a lower AD in 49 of
73 segments, there was little covariance between temperature
and AD in clusters 2 and 3 (Pearson correlation −0.02 and
−0.27, respectively), and the net effect of temperature on AD
was less than 1% of all drivers in all four clusters (0.001%,
0.4%, 0.007%, and 0.0009%, respectively; Figure 5). This result
is somewhat surprising given the multiple mechanisms by
which elevated temperature can reduce DO concentrations,
including lower solubility and elevated respiration (e.g., refs 53
and 54) and recent evidence for water temperature increases in
the Chesapeake Bay over the past three decades.54,55 The

relative impact of observed summer water temperature changes
(e.g., ref 15) on AD may simply be muted relative to other
variables in our analyses. For example, the three-year running
means we used to analyze AD may preclude temperature
impacts from emerging in the causal inference, given that
temperature may not impart a “memory effect” on water
quality that persists for many years. Even so, given the high
interannual variability in discharge to the Chesapeake Bay and
most estuarine ecosystems, our results indicate that future
changes in discharge (e.g., ref 56) will be a primary driver of
the Chesapeake Bay’s water quality.
In all but cluster 2, total phosphorus and nitrogen improved

AD (Figure 5), which is not consistent with the well-described
eutrophication process where elevated nutrient concentrations
enhance algal biomass and increase oxygen consumption in
bottom waters (e.g., refs 11 and 57). However, because the AD
we analyzed represents surface water conditions; the positive
link between nutrients and AD is consistent with the nutrient
stimulation of phytoplankton biomass and oxygen-generating
primary production. Indeed, nitrogen and phosphorus are
incorporated into growing phytoplankton biomass, which is
consistent with our finding that chlorophyll-a (a proxy for
phytoplankton biomass) directly improved AD in all but
cluster 1 (Figure 4, Tables S4−S7) and indirectly improved
AD in all four clusters (Tables S16−S19). A consideration
from these results is that nutrient reduction goals, if met, may
have their intended effect of reducing primary production and
associated surface water oxygen production, thereby having the
unintended consequence of worsening surface water AD. Thus,
management actions aimed at reaching dissolved oxygen
criteria may need to be adapted to consider discrepancies
between the impacts of eutrophication in surface versus
bottom waters and the trade-offs associated with spatially
decoupled surface oxygen production and bottom oxygen
consumption processes. We should also emphasize that the
oxygen concentrations used in this analysis are measured
during the day, thus reflecting conditions when phytoplankton
are actively growing and generating oxygen and that this
analysis is potentially biased toward the positive impacts of
phytoplankton biomass on oxygen.
This tension between surface and bottom water manage-

ment warrants further attention, particularly because it appears
that winter−spring flows were responsible for the improve-
ment in AD in cluster 3 beginning in 2001. There was a
prolonged drought between 1999 and 2002, especially in the
Susquehanna River basin where annual discharges were at
contemporary minima for four years.15,58 During this period,
chlorophyll-a concentrations declined and DIN concentrations
increased in cluster 3 (Figure 3), presumably because of the
lessened nutrient demand from phytoplankton. This drought
period was, however, associated with a resurgence of living
resources (i.e., submerged macrophytes) whose restoration is a
target of water quality management,58 a reduction in
chlorophyll-a in seaward, open regions of the Chesapeake
Bay,15 and a period of low hypoxic volume in the estuary.12

Thus, the fact that the natural nutrient reduction experiment of
a drought created conditions consistent with those sought by
ecosystem restoration efforts, that the drought led to worsened
AD in surface waters, and the fact that postdrought increases
winter−spring flows led to improved AD in cluster 3, highlight
that nutrient inputs may benefit surface water AD in some
regions.
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3.3. Summary and Management Implications. Quan-
tifying direct and indirect effects that putative drivers have on
an indicator variable like AD can identify management actions
most likely to meet restoration targets. Our analysis reinforces
that freshwater inputsand manageable nutrient and sediment
levels they carryare where most interventions should be
aimed. Flows from January to May led to improved AD in all
regions except the large open central segments of the Bay,
which was also the only part of the Bay where dissolved
inorganic nitrogen meaningfully impacted AD. These differ-
ences add to a growing recognition of the need for spatially
explicit management that considers regional differences in the
ways that upstream, low-salinity regions differ from more
expansive seaward waters.23,59−61 Similarly, this study is itself
context-dependent in its focus on open water segments of the
Bay, which we focused on because they are characterized by a
relatively large diversity of species and habitats. In contrast,
freshwater inputs have been clearly linked to oxygen depletion
in deep water segments due to the combined effects of
stratification and nutrient-induced organic matter production
and sinking.44

The central segments of the Bay in cluster 1 also illustrate
how our approach can identify negative water quality
consequences before they manifest. There were more negative
harmful drivers of AD than positive drivers in cluster 1, more
so than in any other cluster. This is shown as the proportion of
negative net effects in Figure 5 and suggests that, despite a
record of low AD (close to zero) over the time frame we
analyzed, these segments of Chesapeake Bay are at risk for
future deficits given large changes in those drivers. The
dominance of winter−spring river and sediment inputs in
cluster 1 thus makes AD in this system vulnerable to predicted
future increases in winter−spring spring precipitation and
discharge in the Chesapeake Bay watershed.56

An important result from this study is that the two methods
we attempted to use to discover causal drivers of AD without
prior knowledge, using nothing but coincident time series data,
were unsuccessful. Methods like CCM and PCMCI have
recently garnered attention as ways to use observational data to
understand complex systems.32,62 However, both CCM and
PCMCI produced qualitatively refutable interactions (Tables
S12−S23), notably failing to consistently identify DO as a
cause of AD despite AD being calculated directly from DO.
These methods may be more suited to carefully testing
individual interactions than reconstructing entire systems,
especially highly complex multivariate systems like the
Chesapeake Bay. It may also be the case that they infer
mathematical relationships, such as those involving derived
indicator variables, differently than physical interactions. We
were able to rely on expert knowledge of which variables could
interact, but the Chesapeake Bay is an unusually well-studied
ecosystem. We suggest causal inference research focus on ways
of incorporating prior knowledge, as in the construction of
Bayesian networks,63 particularly for cyclic systems where
variables can indirectly have an effect on themselves.
Indirect effects are also as important as direct effects in

illustrating controls on water quality variables. Consider that
river flow and associated suspended sediment loads were the
strongest drivers of AD across the entire Bay but exerted
comparatively weak effects on the variables they directly
caused (AD has only DO as a direct cause, which it is
calculated from). Net effects can always be calculated once
standardized direct effects are known, and we find that they

more usefully explain how complex systems function. Large,
highly connected systems may require converging approx-
imations of net effects as the number of paths connecting each
pair of variables becomes too large to store in memory.
A final consideration is to emphasize the value of spatially

replicated long-term monitoring data for understanding long-
term change in ecosystems. The Chesapeake Bay, like most
ecosystems, is dynamic and spatially heterogeneous. High-
resolution monitoring programs can track these behaviors and
benefit the development of mathematical and statistical
methods to explain and predict them and, as with AD, can
produce useful synthetic indicators of system health. With
these data, management decisions benefit from the kinds of
exploratory inference we have conducted here to understand
the water quality dynamics in the Chesapeake Bay.
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